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Abstract
We introduce a task-parallel algorithm for sparse incomplete Cholesky factorization

that utilizes a 2D sparse partitioned-block layout of a matrix. Our factorization algorithm
follows the idea of algorithms-by-blocks by using the block layout. The algorithm-by-
blocks approach induces a task graph for the factorization. These tasks are inter-related to
each other through their data dependences in the factorization algorithm. To process the
tasks on various manycore architectures in a portable manner, we also present a portable
tasking API that incorporates different tasking backends and device-specific features using
an open-source framework for manycore platforms i.e., Kokkos. A performance evaluation
is presented on both Intel Sandybridge and Xeon Phi platforms for matrices from the Uni-
versity of Florida sparse matrix collection to illustrate merits of the proposed task-based
factorization. Experimental results demonstrate that our task-parallel implementation de-
livers about 26.6x speedup (geometric mean) over single-threaded incomplete Cholesky-
by-blocks and 19.2x speedup over serial Cholesky performance which does not carry task-
ing overhead using 56 threads on the Intel Xeon Phi processor for sparse matrices arising
from various application problems.
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1 Introduction
Incomplete Cholesky factorization is effectively used for preconditioned iterative methods to
solve large-scale Symmetric Positive Definite (SPD) linear systems. Computing incomplete
factorizations scalably in shared-memory systems is an open problem for both multicore and
manycore architectures, because incomplete factorizations are characterized by irregular data
access patterns, frequent synchronizations, and dependences that limit the available parallelism
when expressed in a data-parallel manner. First, incomplete factorizations, by definition, are
much more sparse than their counterparts, the complete factorizations. This sparsity precludes
the use of any Dense Linear Algebra (DLA) operations such as the Basic Linear Algebra Sub-
program (BLAS) kernels and results in a sparse data access pattern that is very irregular in a
traditional incomplete factorization algorithm. By traditional, we refer to the incomplete fac-
torization algorithm (e.g., left-looking and right-looking variants) that is implemented using a
compressed sparse row/column format. Second, a traditional parallel incomplete factorization
uses an ordering technique of rows or/and columns to expose some parallelism. However,
the conventional sparse factorization algorithms still suffer from synchronization bottlenecks
for rows or columns that cannot be factored in parallel. Third, when the only available par-
allelization option is using a simple parallel for, the traditional incomplete factorization
cannot be expressed efficiently. In general, a matrix is reordered to explore parallelism and the
substructure resulting from the reordering phase is more suitable for task-parallel algorithms,
which require means of expression as such.

We propose a parallel incomplete sparse factorization algorithm and its implementation
targeting multicore and manycore architectures, called Tacho. In particular, we focus on
task-parallel sparse level(k) incomplete Cholesky factorization.1 Our approach is based on
a class of algorithms, called algorithms-by-blocks, originating from parallel out-of-core DLA
algorithms [21]. This class of algorithms has been adopted for asynchronous thread-parallel
execution in DLA libraries [11, 14, 35]. Applying this style of algorithms to sparse matrix
factorization, there are several challenges in handling the irregular data structure of sparse
matrices and blocking strategies that can expose most of parallelism.

In DLA, several Application Programming Interfaces (APIs) [22, 29, 37] are proposed to
facilitate algorithms-by-blocks. These APIs are primarily developed to improve data local-
ity by changing the standard columnwise storage format to a recursive block storage format.
However, no attempt has been made to use a similar 2D block layout on sparse matrices for
shared-memory factorizations. The sparse linear algebra community has considered block-
based layouts for simple kernels such as sparse matrix vector multiply [5] or sparse matrix-
matrix multiply [9]. Instead, 1D data layouts are often used for high performance computing
libraries that utilize factorizations [24]. The use of 1D partitions can severely limit parallelism
when a sparse matrix has a large bandwidth and it incurs synchronization bottlenecks. On
the contrary, the 2D block layout based on Nested Dissection (ND) ordering is more suitable
to expose fine-grained task parallelism and better load balance as it can create a number of
tasks that can be concurrently executed. This enables the asynchronous task parallelism in the
block level rather than in a row level. The usage of such a layout also regularizes the data
access with respect to the blocks. The subblocking approach is mostly applied to sparse di-

1The level(k) incomplete factorization determines the location of additional nonzero factors, called f ills, based on
the sparsity pattern of a matrix. Initially, all nonzero entries of the matrix are set with a level 0. Then, a fill is created
with an increasing level and restricted by the threshold k during Gaussian elimination.
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rect factorizations for computing dense (supernodal) blocks [23, 26, 28, 36]. To the best of
our knowledge, this 2D sparse partitioned-block layout, where the blocks of a sparse matrix
are themselves sparse, has not been explored for complex kernels like sparse factorizations in
shared-memory architectures. For brevity, we will use the term 2D layout or 2D block ma-
trix for a two-dimensional sparse partitioned-block layout and a matrix that uses that layout
respectively. From an implementation perspective, the 2D block, a light-weight object that
describes a rectangular computing region on a sparse matrix, becomes an entry of a 2D block
matrix (matrix of blocks). Note that the hierarchical representation of our block sparse matrix
does not need to repack data associated with a block; instead, the block points to the base
matrix with appropriate meta data (partition information) specifying the rectangular region.
Further performance improvement can be achieved by repacking the corresponding data of
blocks. However, repacking may carry additional overhead and the cost might be significant
considering the light workload of incomplete factorization.

By applying algorithms-by-blocks on the 2D layout, a problem is reformulated in terms of
block matrix computations; blocks become a computing unit and operations among blocks be-
come tasks. Then, resulting tasks are scheduled, potentially out-of-order, to compute resources
after satisfying task dependences. In short, the depedences expressed through the API define
a partial order of possible task executions that the runtime system maps to available threads
and the particular system architecture. This approach yields a clear separation of concerns by
decoupling algebraic structure from runtime task scheduling.

We have implemented the task-parallel Cholesky factorization by extending the open-
source Kokkos library [18] with a portable tasking interface and using it for the factorization.
The Kokkos library provides a high-level programming abstraction pursuing portable perfor-
mance on various manycore architectures. We have extended it to include a portable interface
for task parallelism. Through the interface, developers write an application code once and
the code is portable to heterogeneous device environments with device-specific programming
models. Currently, our extensions include backends for Pthreads and Qthreads [39] to sched-
ule task parallelism on host devices, e.g., IBM POWER series, Intel Xeon multicore and Intel
Xeon Phi manycore processors. Kokkos already provides support for data parallelism on the
GPU, and we are on-track to develop a GPU backend for the Kokkos task interface in the com-
ing year. Key features of the new interface include futures and dependences to enable general
task Directed Acyclic Graphs (DAGs), and non-blocking semantics to accommodate devices
such as GPUs.

The main contributions of this paper include:

• a high-level matrix abstraction for 2D sparse partitioned-block matrices that facilitates
task parallelism with dependences using future references;

• a new task-parallel implementation for sparse level(k) incomplete Cholesky factoriza-
tion that utilizes 2D layouts;

• a portable tasking interface and its implementation, designed to support different tasking
backends for different hardware features and limitations;

• performance evaluation for several test problems that shows our task-parallel factorization-
by-blocks delivers scalable and portable parallel performance on an Intel Sandybridge
processor and an Intel Xeon Phi coprocessor.
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The rest of the paper is organized as follows. Section 2 describes our extensions of the Kokkos
library to support task parallelism. Section 3 explains sparse level(k) incomplete Cholesky-
by-blocks. A performance evaluation is presented in Section 4. Section 5 discusses related
work. Finally, we conclude in Section 6.

2 Kokkos portable tasking API
The programming model chosen for Tacho is an extension of Kokkos [18] to support dependency-
driven task-parallel execution. Kokkos has been developed to address the challenge of perfor-
mance portability across manycore architectures; e.g., multicore CPU, Intel Xeon Phi, and
NVIDIA GPU. Until recently, Kokkos was supported only for data parallelism. However, our
extensions enable the specification of computational tasks together with the dependence rela-
tionships between them. These tasks and dependences form an implicit DAG that is scheduled
by a run time system on behalf of the application.

2.1 Abstraction
A Kokkos task is created with a C++ functor (body of work) to execute and an optional number
of dependences. Dependences are defined by handles to other tasks that must complete before
the task scheduler will execute the newly created task. Upon successful creation of a task, a
future is returned. A Kokkos future is the handle to a task that may be used to denote inter-task
dependences, probe for task completion status, or obtain the return value of a task.

A Kokkos execution policy defines how and where “bodies of work” will execute in par-
allel. For the task interface, all run time task management occurs through a task execution
policy. This policy is responsible for the creation, destruction, scheduling, and execution of a
group of related tasks. Dependent tasks must be members of the same task execution policy
so that their dependences can be enforced by the policy.

We succinctly illustrate how a user creates a task execution policy and tasks with depen-
dences in Fig. 1. In this example, three tasks are implemented with C++ classes: FunctorX,
FunctorY, and FunctorZ. The policy’s create function allocates a task with the given func-
tor implementation, but does not schedule the task. The add dependence function introduces
a dependence of the first task upon the second task; i.e., the first task is not allowed to execute
until the second task completes. The spawn function schedules the task for execution. If there
are no dependences, the scheduled task may immediately execute, perhaps even completing
before the spawn function returns. Finally, the wait function is called to wait for all ready
tasks owned by the policy to complete, including tasks that become ready in the course of
executing other tasks owned by the policy.

Properties of Kokkos tasks and data are derived from goals of both productivity and per-
formance portability. Support for task DAG execution based on dependences and futures al-
low significant flexibility in the types of algorithms that can be expressed and the amount of
parallelism that can be exposed. Tasks are non-preemptive and non-blocking because some
architectures targeted by Kokkos; e.g., tasks on GPUs cannot support blocking.

Kokkos data is expressed in the form of multidimensional arrays, called views. A Kokkos
view defines where allocated data resides (e.g., CPU vs. GPU memory) and the layout of
that multidimensional array data. Layout is polymorphic with respect to the execution archi-
tecture. For example, on CPUs the default layout is row major (array of structures) and on
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/ / u s i n g t h e Kokkos namespace
void foo() {

us ing Space = /∗ where t o e x e c u t e ∗ / ;

/ / t h e p o l i c y i s d e f i n e d on a s p e c i f i c e x e c u t i o n space
/ / m u l t i p l e p o l i c y o b j e c t s on d i f f e r e n t e x e c u t i o n s p a c e s are a l l o w e d
TaskPolicy <Space > policy ;

/ / FunctorX , Y , Z are C++ c l a s s e s c o n t a i n i n g t a s k s ’ code
Future <Space > f_x = policy.create( FunctorX() );
Future <Space > f_y = policy.create( FunctorY() );
Future <Space > f_z = policy.create( FunctorZ() );
policy.add_dependence( f_z , f_x ); / / f z depends on f x
policy.add_dependence( f_z , f_y ); / / f z depends on f y
policy.spawn( f_z ); / / Func torZ i s now w a i t i n g on FunctorX and FunctorY

/ / t o c o m p l e t e e x e c u t i o n
policy.spawn( f_x ); / / may i m m e d i a t e l y e x e c u t e
policy.spawn( f_y ); / / may i m m e d i a t e l y e x e c u t e
wait( policy ); / / w a i t f o r a l l t a s k s t o c o m p l e t e

}

Figure 1: Simple example of using a Kokkos task execution policy to create tasks, introduce
dependences, spawn tasks for execution, and wait for a group of tasks to complete.

GPUs the default layout is column major (structure of arrays). The view abstraction and API
allows an architecture-appropriate layout to be introduced into user code without requiring any
modification of that code.

2.2 Implementation
Initially, we implemented a basic task execution policy using a Pthreads thread-pool to execute
tasks on shared memory multicore and manycore platforms. We are also developing a task ex-
ecution policy using the Qthreads [39] lightweight threading library for both task scheduling
and execution. The Qthreads library is optimized for efficient and scalable node-level execu-
tion on CPU-like multicore and manycore architectures. Qthreads offers fast context switching
between tasks and software-implemented Full Empty Bit (FEB) synchronizations, inspired by
the Tera MTA / Cray XMT architecture [3], that map especially well to futures. We plan to
develop a task execution policy for GPU architectures within the next year.

A task execution policy’s scheduler has three primary responsibilities. First, it tracks which
tasks are ready for execution and which tasks are waiting for inter-task dependences to be satis-
fied. Second, it selects and executes ready tasks on available cores. Third, as tasks complete it
updates their associated dependent tasks to a ready state. The goal of a scheduler is to carry out
these responsibilities as efficiently and thread-scalably as possible. Note that application code
written using the Kokkos API does not need to be changed to benefit from new or improved
backend implementations.

3 Sparse incomplete factorization
This section describes task-based level(k) incomplete Cholesky factorization using the 2D
block layout. The factorization method in Tacho consists of symbolic factorization and nu-
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meric factorization. Symbolic factorization (Section 3.1) results in a 2D sparse partitioned-
block matrix (Section 3.2). Once the sparsity pattern of the Cholesky factors is determined,
Cholesky-by-blocks numeric factorization (Section 3.3) generates tasks with dependences ac-
cording to the data flow of the factorization process and computes factors via the portable
tasking API.

3.1 Symbolic factorization

Algorithm 1 Symbolic factorization
1: Compute the ND ordering
2: Reorder the matrix with the ND ordering
3: Prune t levels of the ND tree to control minimum block sizes
4: Find the level-k fill
5: Construct 2D block matrix based on the ND tree

Algorithm 1 describes our symbolic factorization phase. As a first step, we use a Nested
Dissection (ND) ordering [20] from the Scotch [32] library to expose a high degree of concur-
rency during the factorization. The algorithm recursively separates a matrix into two subprob-
lems, providing a tree hierarchy. In addition to improving the concurrency, the ND ordering
also reduces the amount of fill (zeros turning into non-zeros during the factorization), which
corresponds to the amount of work in the factorization. To keep the same amount of work dur-
ing scaling studies, we generate the same number of levels of the ND tree but optionally prune
the tree to allow enough work for each task. Next, we determine the location of potential fill up
to the given fill-level using graph analysis. Our implementation of the symbolic factorization
follows the algorithm proposed by Hysom and Pothen [25]. Using the ND tree, we construct
a 2D sparse partitioned-block matrix (a sparse matrix of sparse matrices). We devote the next
subsection to this last step.

3.2 2D sparse partitioned-block matrix
The factorization algorithm in Tacho is uniquely characterized by its recursive definition of the
sparse matrix structure. In this approach, a 2D sparse matrix consists of submatrices to define
computational blocks on a scalar sparse matrix. As a result, our task-parallel Cholesky fac-
torization has the same look-and-feel as the scalar Cholesky factorization, greatly improving
programmability. We demonstrate this later in Section 3.3.

Scotch provides an array of ranges for columns (or rows) in the reordered matrix where a
range corresponds to a group of variables (separator) that can be treated together. Based on the
hierarchical relation of the ranges, we can construct a 2D sparse block layout over the scalar
matrix by creating view objects that cover nonzero regions. For example, Fig. 2 illustrates the
reordered sparse matrix and its corresponding block structure. We denote this collection of
submatrices as a 2D sparse partitioned-block matrix.

To facilitate the 2D block layout, we propose the following hierarchy of views on a sparse
matrix:

CrsMatrixBase a base matrix object that contains the standard data structure for sparse ma-
trices i.e., row-pointers, column-index array, and value array;
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Figure 2: An example of symmetric block nested dissection ordering permuted by Scotch.
Left: a sparse matrix with natural ordering. Right: a hierarchical view of the block reordered
matrix.

MatrixView a matrix view that defines a 2D rectangular data region overlaid on the base
matrix, which is defined by offsets and view dimensions, see Fig. 2;

CrsRowView a sparse row view that defines the range of columns of a row associated with a
MatrixView;

TaskView a derived class extended from the MatrixView to include a future associated with
a corresponding 2D data region.

We assume that matrices are stored in CrsMatrixBase using the standard Compressed Sparse
Row (CSR) format. This base matrix has template arguments for a value type which can be
either a scalar (for a scalar matrix) or sparse block (for a 2D matrix). A light-weight matrix
view is defined as MatrixView with partition information. As the matrix view is templated
with an associated base matrix, it could be a block of scalars or block of 2D matrices. This
view object becomes a basic computing unit in our task-parallel sparse matrix factorization.
Task granularity is controlled by adjusting the size of a matrix view; a view can be split into
many views or views can be merged into a single view. Since the matrix view only contains
meta data, these operations do not carry overhead of data repacking. Our current work does not
include precise blocksize tuning capabilities for generating optimal task granularity. Instead,
we roughly control the task granularity by adjusting the Scotch tree hierarchy level.

In addition, an extension of the matrix view is used for the tasking interface, called TaskView.
This class contains a future object to record a future state updated by tasks associated with
a particular 2D block. Finally, the CrsRowView specifies a part of a row within a matrix view.
The row view is used to access elements of a matrix view in which each element can be either
a scalar or sparse block matrix itself.
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Algorithm: A := CHOL-BLOCKED(A)

Partition A→
(

AT L AT R

ABL ABR

)
where AT L is 0×0

while length(AT L)< length(A) do
Determine block size b
Repartition(

AT L AT R

ABL ABR

)
→

 A00 A01 A02

A10 A11 A12
A20 A21 A22


where A11 is b×b

A11 := CHOL(A11) CHOL

A12 := TRIU(A11)
−1A12 TRSM

A22 := A22−AT
12A12 HERK

Continue with(
AT L AT R

ABL ABR

)
←

 A00 A01 A02
A10 A11 A12

A20 A21 A22


endwhile

Figure 3: Cholesky algorithm. The blocks in the 2×2 and 3×3 block matrices that correspond
to each other are of the same color. CHOL and TRIU represent Cholesky factorization and the
upper triangular part of an input matrix respectively.

Difference from other approaches. After we construct a 2D matrix based on ND block
ordering, we no longer use the tree hierarchy to extract parallelism. Tasks are created by the
algorithms-by-blocks based on the 2D block sparse layout. The approach differs from oth-
ers in that we do not explicitly rely on the ND tree-hierarchy (or the elimination tree) in the
numeric factorization phase. On the other hand, conventional approaches for task-parallel
implementation explicitly use the tree-hierarchy to generate independent tasks and their de-
pendences, as well as to distribute compute resources according to subtree structures [2]. Such
implementations may not be performance-portable as the implementation is hard-wired to
problem-specific sparse structures and hardware execution environments.

3.3 Numeric factorization: Cholesky-by-blocks
This section describes the Cholesky-by-blocks algorithm. The right-looking Cholesky algo-
rithm is shown in Fig. 3. The algorithm is expressed with partitioned matrices using Formal
Linear Algebra Methods Environment (FLAME) notations [34, 38]. A short description of
the notation follows. First, note that the algorithm will work equally well on matrices with
scalar entries (b=1) or sparse block entries (variable b). Second, ABR is partitioned further and
updated at each iteration of the while loop. In this particular algorithm, note that the com-
putations only happen on the ABR block. The algorithm consists of three different operations.
Using the BLAS notation, the three operations in Fig. 3 are CHOL, TRSM, and HERK which
correspond to a Cholesky factorization, triangular solve and hermitian rank-k update. Finally,
the partition is redefined (see the thick partition line moving forward) for the next iteration of
the algorithm.

We transform this algorithm into Cholesky-by-blocks by converting the basic computing
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Algorithm: A := CHOL-BY-BLOCKS(A)

Partition A→
(

AT L AT R

ABL ABR

)
where AT L is 0×0

while length(AT L)< length(A) do
Repartition(

AT L AT R

ABL ABR

)
→

 A00 A01 A02

A10 A11 A12
A20 A21 A22


where A11 is 1×1

f u n c t i o n genTaskChol:
Future f = create( Chol , A11(0,0) )
add_dependence( f, A11(0,0).getFuture() )
A11(0,0).setFuture( f )
spawn( f )

f u n c t i o n genTaskTrsm:
f o r j in A12.nnz()

Future f = create( Trsm , A11(0,0), A12(0,j))
add_dependence( f, A11(0,0).getFuture() )
add_dependence( f, A12(0,j).getFuture() )
A12(0,j).setFuture( f )
spawn( f )

f u n c t i o n genTaskHerk:
f o r i in A12.nnz()

f o r j in A12.nnz()
i f exist( A22(i,j) )

Future f = create( i==j ? Herk : Gemm ,
A12(0,i), A12(0,j),
A22(i,j) )

add_dependence( f, A12(0,i).getFuture() )
add_dependence( f, A12(0,j).getFuture() )
add_dependence( f, A22(i,j).getFuture() )
A21(i,j).setFuture( f )
spawn( f )

Continue with(
AT L AT R

ABL ABR

)
←

 A00 A01 A02
A10 A11 A12

A20 A21 A22


endwhile

Figure 4: Cholesky-by-blocks algorithm on a 2D partitioned-block matrix. The blocks in the
2×2 and 3×3 block matrices that correspond to each other are of the same color.

unit from a scalar to a block. The blocked algorithm described in Fig. 3 is applied to Ai j
elementwise. By doing so, the three different operations inside the while loop becomes three
different opportunities to generate tasks. Fig. 4 describes the Cholesky-by-blocks algorithm
using the Kokkos tasking interface. By running the Cholesky-by-blocks on a 2D matrix, tasks
are created and spawned with dependences. A spawned task is recorded on a future of an
output matrix view associated with the task. The dependence for each task is determined by
the input/output blocks used in the task and any futures associated with them. Since blocks
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record associated tasks, we do not need to keep track of the entire task dependences but only
follow the loop body of the algorithm.

We demonstrate this algorithm with a small example matrix. Suppose that ND ordering
provides a symmetric permutation matrix P, which leads to an upper triangular block matrix

PT AP =


A00 A04

A11 A13 A14
A22 A23 A24

A33 A34
A44


where all Ai j blocks are sparse and have block dimensions compatible with each other. Then,
we apply the Cholesky-by-blocks algorithm as depicted in Fig. 4. As a result, a sequence of
block matrix computations is generated as illustrated in Fig. 5. Task dependences are found
from the input/output relations described in the loop body of the blocked Cholesky algorithm:

CHOL→ TRSM→ HERK (or GEMM).

For example, a TRSM task will depend on a CHOL task that is an input for the task; a HERK
task will depend on TRSM tasks that should be completed on the data region that is required
as an input of the task. This dependence relationship is applied to individual blocks and a cor-
responding task DAG is shown in Fig. 6b. Contrary to the coarse grain tasks that correspond
to the block ND tree depicted in Fig. 6a, our sparse Cholesky-by-blocks generates a larger
number of asynchronous fine-grained tasks. In this particular example, the CHOL(A22) in the
third iteration can be executed before finishing tasks (i.e., TRSM, HERK and GEMM) created in
the first and second iterations. This is possible because the CHOL(A22) has input dependences
only to itself. Our Cholesky-by-blocks algorithm does not do any special book-keeping to
determine when to launch a certain task. Instead, it loops through the entire 2D matrix and
generates the tasks as it steps through the loop. Tasks such as CHOL(A22) can be run imme-
diately as they are created with no dependences. This is possible because our task-parallel
approach is not strictly tied to the tree hierarchy derived from ND ordering. Furthermore, we
see in the first iteration that TRSM(A04) can begin immediately as its dependences are satisfied,
whereas CHOL(A22) won’t be even created till the second iteration, which is the opposite of
what a tree based algorithm would have done. This approach exposes much more fine-grained
task parallelism. Also note that HERK(A33) in the third iteration has taken the form of a sparse
GEMM which is much more cache-friendly to compute than simple rank-1 updates.

4 Performance evaluation
In this section, we evaluate our task-parallel incomplete Cholesky factorization on problems
selected from the University of Florida sparse matrix collection [17]. The matrix properties are
tabulated in Table 1. The largest problem, G3_circuit, has about 1.5 million rows. Note that
bmwcra_1 and pwtk are relatively denser by an order of magnitude than other test problems
(see the average number of non-zeros per row in the table). Later, we show that this property
significantly changes both serial and parallel performance. All experiments are performed on a
machine with a dual socket configuration of “Sandy Bridge” processors (2×8 Xeon E5-2670
2.6GHz cores) and two “Knights Corner” coprocessors (1×57 Xeon Phi with 1.1GHz cores)
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A00 A04

A11 A13 A14
A22 A23 A24

A33 A34
A44


A00 := CHOL(A00)

A04 := TRIU(A00)
−1A04

A44 := A44−AT
04A04

(a) 1st iteration


A00 A04

A11 A13 A14
A22 A23 A24

A33 A34
A44


A11 := CHOL(A11)

A13 := TRIU(A11)
−1A13

A14 := TRIU(A11)
−1A14

A33 := A33−AT
13A13

A34 := A34−AT
13A14

A44 := A44−AT
14A14

(b) 2nd iteration


A00 A04

A11 A13 A14

A22 A23 A24
A33 A34

A44


A22 := CHOL(A22)

A23 := TRIU(A22)
−1A23

A24 := TRIU(A22)
−1A24

A33 := A33−AT
23A23

A34 := A34−AT
23A24

A44 := A44−AT
24A24

(c) 3rd iteration
A00 A04

A11 A13 A14
A22 A23 A24

A33 A34
A44


A33 := CHOL(A33)

A34 := TRIU(A33)
−1A34

A44 := A44−AT
34A34

(d) 4th iteration
A00 A04

A11 A13 A14
A22 A23 A24

A33 A34

A44

 A44 := CHOL(A44)

(e) 5th iteration

Figure 5: Generated block matrix computations while proceeding on Cholesky-by-blocks.

connected via PCI-Express. Each Intel Xeon Phi coprocessor has 57 cores with 4 hyperthreads
per core. We turn off hyperthreading using a hardware locality library [8] and use up to 56
cores in a native mode as one core is reserved for the operating system. The GNU compiler
(5.1.0) and Intel compiler (15.2.164) with -O3 and Kokkos Pthreads and Qthreads backends
are used for the Sandy Bridge multicore processor and Xeon Phi coprocessor respectively.

To benchmark parallel performance, we compare Tacho to a parallel ILU package, Eu-
clid [24] as the closest alternative. The Euclid library is a scalable implementation of the
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Figure 6: A task dependence graph for the example illustrated in Fig. 5.

Matrix ID # of rows(n) # of nonzeros(nnz) nnz/n

ecology2 999,999 4,995,991 4.99
G3_circuit 1,585,478 7,660,826 4.83
parabolic_fem 525,825 3,674,625 6.98
thermal2 1,228,045 8,580,313 6.98
bmwcra_1 148,770 10,641,602 71.53
pwtk 217,918 11,524,432 52.88

Table 1: Test problems selected from the University of Florida sparse matrix collection.

parallel ILU factorization using Message Passing Interface (MPI). The Euclid parallel ILU
algorithm consists of four phases: 1) a partitioning phase to minimize communication costs,
2) local reordering to separate interior nodes from boundary nodes, 3) global reordering to
improve parallelism and 4) the numeric factorization. In this comparison, we use symmetric
Reverse Cuthill McKee (RCM) ordering for Euclid to reduce the bandwidth of matrices as this
is the best possible ordering for Euclid’s performance. A matrix is distributed to processors
such that each processor owns an equal number of nodes. As the two codes has different re-
ordering strategies and symbolic factorization phases, we compare the numeric factorization
phase of Euclid with our factorization code. Note that Euclid is an LU factorization code as
opposed to Cholesky factorization that we do here. As a result, we divide Euclid’s numbers
by half to approximate the factorization costs. It is important not to place a huge emphasis on
these performance numbers as we are comparing an MPI based code with a shared-memory
code. However, this is the closest codebase that is publicly available for parallel incomplete
factorization. We present these numbers just to demonstrate the difference between coarse-
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# of nonzeros in U[millions]

Matrix ID L0 L1 L2 L4 Chol(AMD)

ecology2 2.9 4.7 6.0 8.3 45.7
G3_circuit 4.6 7.4 9.6 14.5 189.1
parabolic_fem 2.1 3.5 4.8 6.9 36.1
thermal2 4.9 7.9 10.6 14.8 64.8

bmwcra_1 5.3 14.1 23.2 38.5 90.9
pwtk 5.9 10.9 15.0 21.4 60.0

Table 2: Number of nonzero U factors resulting from level(k) symbolic factorization; for
comparison, the last column shows the number of fill from complete factorization with AMD
ordering.

grained parallelism with traditional rowwise layouts and fine-grained parallelism with 2D lay-
outs.

4.1 Symbolic factorization results
The symbolic factorization phase determines the location of fill for the level(k) incomplete
Cholesky factorization. Similar to Hysom and Pothen [25], our symbolic factorization per-
forms Breadth First Search (BFS) on the adjacency graph of a matrix in parallel for each node
to specify level(k) fill structure. This is implemented in a scalable fashion using two Kokkos
parallel patterns: parallel_for and parallel_scan. The numbers of nonzero U factors
generated by the level(k) incomplete Cholesky factorization are summarized in Table 2. All
matrices are reordered with the block ND algorithm provided by the Scotch library [32]. For
comparison, we also provide size of the fill for complete Cholesky factorization in the last
column of the table. We do not report the times for symbolic factorization as they are not
significant.

4.2 Numeric factorization results
Parallel performance. We report strong scalability of our task-parallel level(k) incomplete
Cholesky factorization and evaluate the parallel performance against the Euclid package. Since
both Kokkos Pthreads and Qthreads backends report similar timing results, here we report only
for Kokkos Pthreads results. First, we compare the time taken for factorization on the Intel
Xeon multicore architecture. Fig. 7 and Fig. 8 show the numeric factorization time for our
task-parallel Cholesky factorization and Euclid respectively. Euclid does not provide separate
timing results for symbolic factorization.2 As the symbolic factorization costs much less than
the numeric factorization, we directly compare the numeric factorization time of our code to
the time reported by the factorization phase of Euclid. As two codes report different ranges of
timing results, we cannot plot all graphs in the same scale and some graphs are plotted with
a different time scale. While Euclid scales well for some matrices, relatively denser problems
such as bmwcra_1 and pwtk prove harder to solve with Euclid-like algorithms. We conjecture

2Euclid reports timing results for subdomain graph setup, factorization, and solve setup.
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Figure 7: [Sandybridge] Time for level(k) incomplete Cholesky-by-blocks factorization with
the Kokkos Pthreads backend (our method).

that the main reason that these matrices are harder to solve is the 1D rowwise matrix partitions.
Although the 1D panels are globally reordered to increase parallelism, matrices with a large
bandwidth (a higher number of nonzeros per row) are not ideal for such parallelism. The
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Figure 8: [Sandybridge] Time for Euclid level(k) incomplete LU factorization (for compar-
ison). The time cost is divided by two to compare with the result of incomplete Cholesky
factorization. Note that some plots have different ranges of values from the plots drawn in
Fig. 7.
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Matrix ID prune level # of ranges # of blocks

ecology2 10 356 1,050
G3_circuit 10 572 2,082
parabolic_fem 8 668 2,437
thermal2 10 378 1,346
bmwcra_1 4 470 1,953
pwtk 4 778 2,933

Table 3: Structure of 2D sparse partitioned-block matrices. The prune level lists the height of
pruned ND subtrees from the leaf level. The number of ranges is the total number of vertices
in a ND tree. The number of blocks is the number of blocks in a 2D matrix.

same performance trend is commonly observed on other test problems with an increasing
level of fills. The increased number of fills incurs more synchronization bottlenecks among
1D panels and results in the loss of concurrency. On the other hand, our task-parallel Cholesky
factorization delivers robust parallel scalability for all test problems, as tasks are generated
based on 2D block matrices and executed asynchronously.

Comparable parallel performance of our task-parallel Cholesky factorization on the In-
tel Xeon Phi coprocessor is illustrated in Fig. 9. For most test problems, our task-parallel
Cholesky algorithm scales up to the largest number of available threads on the coprocessor.
Our task-parallel implementation delivers about 26.6x speedup (geometric mean) over single-
threaded Cholesky-by-blocks and 19.2x speedup over serial Cholesky factorization (which
does not carry tasking overhead) using 56 threads on the Intel Xeon Phi processor.

Comparison of tasking overhead between Pthreads and Qthreads. Finding appropriate
task granularity is very important to attain higher parallel performance. Multiple aspects of
performance trade-offs should be considered to determine optimal task granularity:

• total number of generated tasks,

• level of concurrency expressed from sparse factorization,

• tasking overhead (context switching, task creation, scheduling and destruction),

• data access overhead for multiple sparse kernel launching,

• number of computing units and local cache sizes.

Using many fine-grained tasks results in a higher degree of concurrency which is more suit-
able for manycore computing environments. However, using such a large number of tasks
may significantly increase tasking overhead and irregular data access cost, which decreases
overall parallel performance of sparse factorization. On the other hand, generating coarse
grained tasks can decrease tasking overhead but may not expose enough concurrency to use
all available hardware resources.

To explore this performance trade-off, we plot the relative tasking overhead, T/Tserial,
where T is the time cost of task-parallel Cholesky-by-blocks and Tserial is the time cost of se-
rial sparse Cholesky factorization. Fig. 10 describes the relative tasking overhead on the Sandy
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Figure 9: [Phi] Time for level(k) incomplete Cholesky-by-blocks factorization with the
Kokkos Pthreads backend (our method).

Bridge multicore processor and the Xeon Phi manycore coprocessor. For the single-threaded
case, this measure indicates that if the time ratio becomes close to one, our Cholesky-by-blocks
runs with relatively small tasking overhead compared to the serial algorithm. The Cholesky-
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Figure 10: [Sandybridge] Time ratio between threaded incomplete Cholesky-by-blocks and
serial version of incomplete Cholesky factorization.
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Figure 11: [Phi] Time ratio between threaded incomplete Cholesky-by-blocks and serial ver-
sion of incomplete Cholesky factorization.
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by-blocks factorization may include two different types of overhead: 1) task scheduling over-
head that increases proportionally with the number of generated tasks and 2) overhead due to
irregular data access during the asynchronous task execution. The tasking overhead from our
Cholesky-by-blocks can be amortized by overlapping it during asynchronous task execution.

From the figures, those relatively less sparse matrices such as bmwcra_1 and pwtk shows
different performance trends from the others. For convenience, we use ecology2 to repre-
sent the other sparse matrices and use pwtk to represent the less sparse matrices. Some key
observations are:

• ecology2 exhibits higher tasking overhead than pwtk due to its lower computational
workload in each task (for the level 0 factorization, ecology2 matrix carries almost the
same amount of overhead as the numerical factorization while the tasking overhead in
pwtk is almost negligible);

• with an increasing level of fill, relative tasking overhead of both test problems decreases
as the workload associated with each task increases;

• the overhead is problem-specific; for example, the overhead of irregular data access
patterns is more dominant for bmwcra_1, which may results in the increasing overhead
with the factorization level.

The other test problems demonstrate similar performance behaviors to these two representative
cases.

As depicted in Fig. 11, similar performance trends are observed on the Xeon Phi many-
core coprocessor. However, the results are quantitatively very distinct from those obtained
on the Sandy Bridge multicore architecture. The relative time ratio of the single-threaded
Cholesky-by-blocks on the pwtk problem is smaller than one with an increased level of fill,
which implies that the serial factorization that does not carries tasking overhead is slower than
the single-threaded Cholesky-by-blocks. This counter-intuitive result is probably due to cache
effects. Since pwtk is considerably less sparse than ecology2, the serial algorithm on this
matrix can incur more cache misses as the effective working set size becomes the entire ma-
trix. On the other hand, our Cholesky-by-blocks processes the factorization in terms of block
computations. By doing so, we can effectively reduce cache misses and improve factorization
performance similar to the BLAS level 3 operations in DLA. Consequently, the algorithm de-
signed for task parallelism is also beneficial for modern manycore architectures by restricting
the computation within a block. Also, the performance of the serial algorithm on the multicore
architecture is less influenced by the increased amount of nonzeros because of the large shared
L3 cache (20 MB).

5 Related work
We summarize other task-parallel implementations of sparse direct and incomplete factoriza-
tions as well as other task-parallel models and run time systems.

Task-parallel sparse factorization. Task-parallel sparse factorization has been implemented
mostly along with multifrontal algorithms, as the algorithm is naturally parallelized using an
elimination tree. This tree-level parallelism can be easily implemented using tasking APIs.
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However, the tree-level parallelism decreases near the root of the tree. To remedy this inef-
ficiency, nested parallelism within supernodal blocks is implemented for sparse multifrontal
Cholesky [23, 26], LU [28] and QR [10, 16] factorizations. For an iterative method, ILU-
PACK [2] uses a runtime task scheduler, OmpSs, for Preconditioned Conjugate Gradient (PCG)
algorithms. Their approach is similar to ours in that the parallelism is extracted from the ND
ordering. However, the code uses a data-flow programming model, tasks are created using an
elimination tree, and depedences are made through a row (contiguous memory region). Hence,
their parallel tasks are very fine-grained task operations such as DOT and AXPY. By contrast,
we use future as a task handle and dependences are made among future references associ-
ated with 2D partitioned-blocks (non contiguous memory region). Correct task dependences
are derived from algorithms-by-blocks and tasks are generated separately from the elimina-
tion tree, enabling a more flexible tasking algorithm. With its 2D partitioned-block layout,
our task-parallel Cholesky factorization exploits efficient sparse operations i.e., CHOL, TRSM,
HERK and GEMM, which are analogous to BLAS level 3 operations in DLA libraries.

Task-parallel models and run time systems. The need to exploit ever-increasing paral-
lelism on emerging multicore and manycore architectures has motivated the development of
numerous task-parallel languages, libraries, and run time systems. Our tasking model devel-
oped in the Kokkos framework supports both futures and dependences, allowing a large space
of possible task DAGs, and its API and implementation use standard C++ with no specialized
compiler support needed. By comparison, Cilk [19] and its successor Intel Cilk Plus 3 support
only strict fork-join task DAGs with no dependences or futures, though an extension for ar-
bitrary dependences has been explored [1]. OpenMP 4.0 [31] supports dependences between
tasks but does not support futures. Cilk, Cilk Plus, and OpenMP all require language exten-
sions, and thus, special compiler support. Beginning in version 4.0, Intel Threading Building
Blocks (TBB) 4 includes a flow graph interface to represent “functional nodes” and edges
between them. StarPU [4] is a C-based task-parallel framework for heterogeneous node archi-
tectures with tagged dependences that requires extensions to the C language through a GCC
plug-in. High Performance ParalleX (HPX) [27] supports futures across distributed memory
machines, as do the Chapel [13] language and Java-based X10 [15], and the related Habanero
C and Habanero Java [12]. Although we use Kokkos to implement our algorithm, the tech-
niques we use could be ported to these or similar programming models with support for futures
and dependence-driven execution.

For DLA, several research projects have developed domain-specific runtime task sched-
ulers: QUARK [40] and SuperMatrix [14] for shared memory architectures; DPLASMA [6]
and PaRSEC [7] for distributed memory architectures. Recently, a distributed task-parallel
Cholesky implementation [30] has been demonstrated using the SMPSs [33] programming
model.

6 Conclusion
We have presented a novel algorithm for task-parallel incomplete Cholesky factorization that
applies algorithms-by-blocks factorization to a 2D block matrix. We have shown that by en-

3https://www.cilkplus.org
4https://www.threadingbuildingblocks.org
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coding the tree hierarchy in the 2D block matrix, the task DAG need not be restricted to a
simple ND tree. This results in a much richer task DAG, leading to better performance. We
believe this algorithm opens up a new direction of research in which other sparse factoriza-
tions such as LU and QR could also gain performance benefits by following the same pattern
used here. We have also designed a simple tasking API and modified an open source library
to support task parallelism with performance portable abstractions for heterogeneous com-
puting devices using different backend libraries. While used for incomplete Cholesky here,
these changes are much more general and we believe they will be useful to develop other task-
parallel codes. We have also shown the performance of a task-parallel Pthreads-based backend
with the incomplete Cholesky factorization as its driver. Our factorization has demonstrated
robust parallel performance with several test problems both on Intel Xeon multicore and Intel
Xeon Phi manycore architectures. We also evaluated tasking overhead associated with differ-
ent task granularities and showed how the overhead costs impact parallel performance. As has
been observed before, generating an excessive amount of tasks is prohibitive due to its tasking
overhead, but we need a large enough number of fine-grained tasks order to effectively ex-
ploit manycore environments. We plan to remedy this granularity problem by exploiting data
parallelism within the tasks in the future.
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